

Simplify

1)
$$\frac{\chi^{2} + 7\chi + 12}{\chi^{2} + \chi - 12} = \frac{(\chi + 3)(\chi + 4)}{(\chi + 4)(\chi - 3)} = \frac{\chi + 3}{\chi - 3}$$

1) $\frac{\chi^{2} + 4\chi}{\chi^{2} + \chi - 12} = \frac{(\chi + 3)(\chi + 4)}{(\chi + 4)(\chi - 3)} = \frac{\chi + 3}{\chi - 3}$

1) $\frac{\chi^{2} + 4\chi}{\chi^{2} - 5\chi} = \frac{\chi^{2} - 16}{\chi^{2} - 25} = \frac{\chi^{2} + 4\chi}{\chi^{2} - 5\chi} = \frac{\chi^{2} - 25}{\chi^{2} - 16}$

2) $\frac{3}{\chi^{2} - 1\chi + 10} = \frac{\chi}{\chi^{2} - 25} = \frac{\chi(\chi + 4)}{\chi(\chi - 5)} = \frac{\chi(\chi +$

Solve
$$2|3x+1|-3=7$$
 Isolate abs. Valve
Sirst.
 $2|3x+1|=7+3$
 $2|3x+1|=10$
 $|3x+1|=\frac{10}{2} \Rightarrow |3x+1|=5$
Now $3x+1=5$ OR $3x+1=-5$
 $3x=4$ $3x=-6$
 $x=-2$

Solve

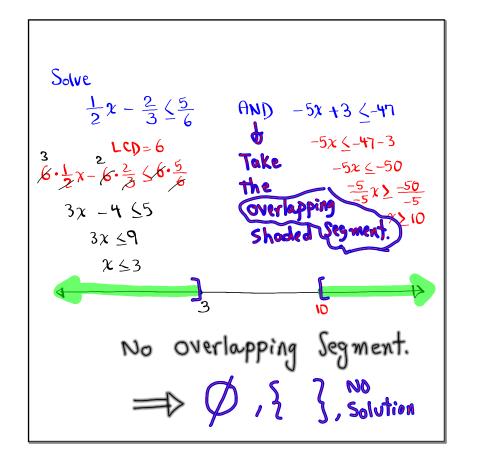
1)
$$|4x-1|+8=3$$
 $|4x-1|=3-8$
 $|4x-1|=3-8$
 $|4x-1|=-5$
 $|4x$

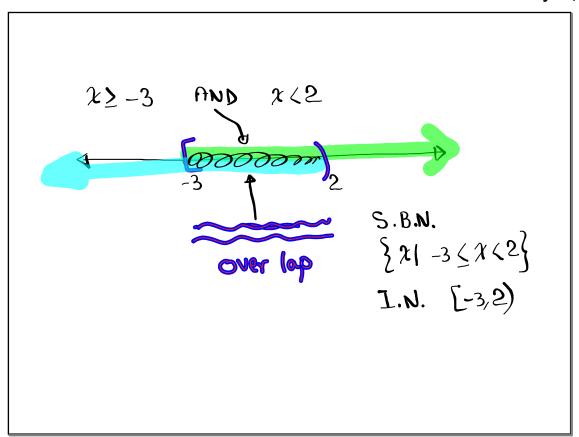
Solve
$$|2x + 5| \le 5$$

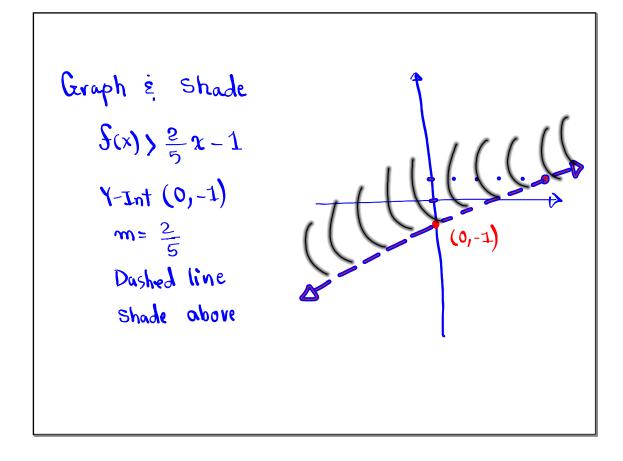
Solve $|2x + 5| = 5$
 $2x + 5 = 5$
 $2x = 0$
 $|x = 0|$
 $|x = 0|$
 $|x = -5|$
S.B.N.
 $|x = -5|$
 $|x = -5|$

Solve
$$-3|x-4|-2<-11$$
 Always isolate abs. Value.
 $-3|x-4|<-11+2$ abs. Value.
 $-3|x-4|<-9$ $|x-4|>\frac{9}{-3}$ Solve $|x-4|=3$
 $x-4=3$ or $x-4=-3$
 $x=1$ $x=1$
T. N. $(-\infty, 1) \cup (7, \infty)$

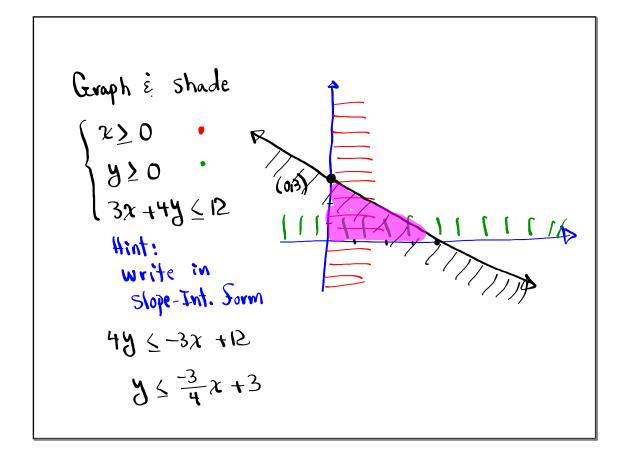
1) Solve:
$$|2x + 7| + 9 = 3$$
 $|2x + 7| = 6$
 $|2x + 7| = 3 = 9$
 $|2x + 7| = 9 = 9$
 $|3x - 5| \ge 0$
 $|3x$

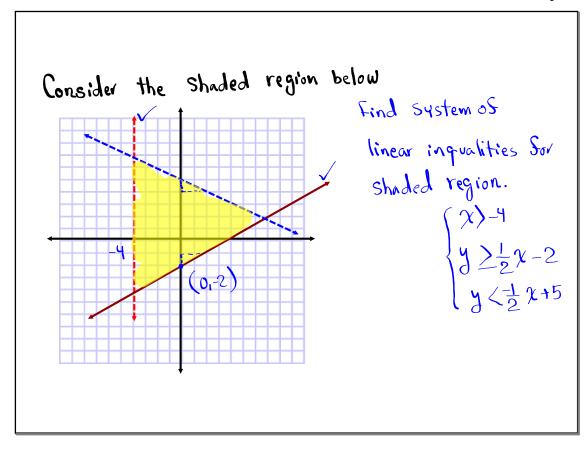

Solve
$$= -3x + 2 < 11$$
 OR $2x - 7 \le -13$


Solve $\stackrel{?}{\epsilon}$ graph on the Same number line System.


 $= -3x < 11 - 2$ OR $2x - 7 \le -13$
 $= -3x < 9$ take $2x \le -13 + 7$
 $= -3x < 9$ take $2x \le -6$
 $= -3x < -3$ whatever $2x \le -3$

Shaded


 $= -3x < -$



Graph
$$\xi$$
 shade
$$\begin{cases} S(x) \leq \frac{-3}{4}x + 5 \\ S(x) > \frac{4}{3}x \end{cases}$$

Review Srom Algebra

Solve
$$\frac{4}{x+3} - \frac{2}{x-7} = \frac{2}{x^2-4x-21}$$

Hint: Use LCD to clear all denominators.

To Sind LCD, make Sure all denominators oure Completely Factored.

 $\frac{4}{x+3} - \frac{2}{x-7} = \frac{2}{(x+3)(x-7)}$

LCD= $(x+3)(x-7)$
 $x+3, x+7$

Excluded Values

 $(x+3)(x-7) \cdot \frac{4}{x+3} - (x+3)(x-7) \cdot \frac{2}{x+3} = (x+3)(x-7)$
 $4(x-7) - 2(x+3) = 2$
 $4x - 28 - 2x - 6 = 2$
 $2x - 34 = 2$
 $2x - 34 = 2$

[18]

Solve
$$\frac{2}{x-3} - \frac{1}{x+3} = \frac{12}{x^2-9}$$

LCD = $(x-3)(x+3)$
 $x-3+0$
 $x+3+0$
 $x+3+0$

System of linear equations
$$\begin{cases} 2x + 3y = 8 \\ x - y = -1 \end{cases}$$
A solution must
$$\begin{cases} 2x + 3y = 8 \\ x - y = -1 \end{cases}$$
Sofistly both eqns.
$$\begin{cases} 2x + 3y = 8 \\ 2(1) + 3(2) = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2(1) + 3(2) = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

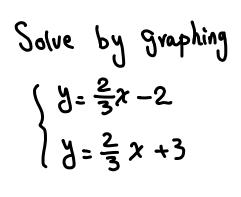
$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

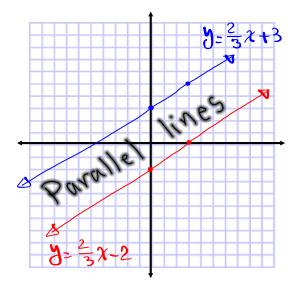
$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$


$$\begin{cases} 2x + 3y = 8 \\ 2 + 6 = 8 \end{cases}$$

$$\begin{cases} 2x + 3y = 8 \end{cases}$$


$$\begin{cases} 2x$$

Is
$$(-2,3)$$
 a Solution of $(-2,3)$ a Solution of $(-2,3)$ a Solution of $(-2,3)$ a Solution of $(-2,3)$ a $(-2,3)$ a Solution of $(-2,3)$ a $($

Solve
$$\begin{cases} 3x + 2y = 6 \\ x - y = -3 \end{cases}$$
by graphing.
$$\frac{x \mid y}{0 \mid 3} = \frac{x \mid y}{-3 \mid 0}$$

